Высокоэффективные солнечные элементы


Описание

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственно электричество. Однако для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС).

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

Мощность потока солнечного излучения на входе в атмосферу Земли составляет около 1366 ватт на квадратный метр. В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью наиболее распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %.

Высокоэффективные солнечные элементы должны преодолеть эту планку, что позволит вывести на рынок более эффективные солнечные батареи.

Сообщается, что в отдельных лабораториях получены солнечные элементы с эффективностью 43 %. В январе 2011 года ожидается поступление на рынок солнечных элементов с эффективностью 39%. В начале 2013 г. Sharp создала солнечную батарею с КПД 44%

Разработчики

Suntech Power, First Solar, Sharp Solar, Yingli, Trina Solar, Canadian Solar

Актуальные сложности

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры. Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Примечания

Комментарии


Добавить свой комментарий
На сайте Конкурс приветствуются все комментарии. Если вы не хотите быть анонимным, зарегистрируйтесь или представьтесь. Это бесплатно.